Package: hlt 1.3.1

hlt: Higher-Order Item Response Theory

Higher-order latent trait theory (item response theory). We implement the generalized partial credit model with a second-order latent trait structure. Latent regression can be done on the second-order latent trait. For a pre-print of the methods, see, "Latent Regression in Higher-Order Item Response Theory with the R Package hlt" <https://mkleinsa.github.io/doc/hlt_proof_draft_brmic.pdf>.

Authors:Michael Kleinsasser [aut, cre]

hlt_1.3.1.tar.gz
hlt_1.3.1.zip(r-4.5)hlt_1.3.1.zip(r-4.4)hlt_1.3.1.zip(r-4.3)
hlt_1.3.1.tgz(r-4.4-x86_64)hlt_1.3.1.tgz(r-4.4-arm64)hlt_1.3.1.tgz(r-4.3-x86_64)hlt_1.3.1.tgz(r-4.3-arm64)
hlt_1.3.1.tar.gz(r-4.5-noble)hlt_1.3.1.tar.gz(r-4.4-noble)
hlt_1.3.1.tgz(r-4.4-emscripten)hlt_1.3.1.tgz(r-4.3-emscripten)
hlt.pdf |hlt.html
hlt/json (API)

# Install 'hlt' in R:
install.packages('hlt', repos = c('https://mkleinsa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mkleinsa/hlt/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

1.70 score 6 scripts 295 downloads 4 exports 45 dependencies

Last updated 2 years agofrom:e7cd918cf4. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-win-x86_64NOTENov 21 2024
R-4.5-linux-x86_64NOTENov 21 2024
R-4.4-win-x86_64NOTENov 21 2024
R-4.4-mac-x86_64NOTENov 21 2024
R-4.4-mac-aarch64NOTENov 21 2024
R-4.3-win-x86_64OKNov 21 2024
R-4.3-mac-x86_64OKNov 21 2024
R-4.3-mac-aarch64OKNov 21 2024

Exports:get_hlt_starthlthltsimmerge_chains

Dependencies:clicodetoolscolorspacecpp11doParalleldplyrfansifarverforeachgenericsggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcppRcppArmadilloRcppDistRcppProgressrlangscalesstringistringrtibbletidyrtidyselecttruncnormutf8vctrsviridisLitewithr