Package: INTRIGUE 0.1.0

INTRIGUE: Quantify and Control Reproducibility in High-Throughput Experiments

Estimate the proportions of the null and the reproducibility and non-reproducibility of the signal group for the input data set. The Bayes factor calculation and EM (Expectation Maximization) algorithm procedures are also included.

Authors:Yi Zhao [aut], Xiaoquan Wen [aut], Michael Kleinsasser [cre]

INTRIGUE_0.1.0.tar.gz
INTRIGUE_0.1.0.zip(r-4.5)INTRIGUE_0.1.0.zip(r-4.4)INTRIGUE_0.1.0.zip(r-4.3)
INTRIGUE_0.1.0.tgz(r-4.4-any)INTRIGUE_0.1.0.tgz(r-4.3-any)
INTRIGUE_0.1.0.tar.gz(r-4.5-noble)INTRIGUE_0.1.0.tar.gz(r-4.4-noble)
INTRIGUE_0.1.0.tgz(r-4.4-emscripten)INTRIGUE_0.1.0.tgz(r-4.3-emscripten)
INTRIGUE.pdf |INTRIGUE.html
INTRIGUE/json (API)

# Install 'INTRIGUE' in R:
install.packages('INTRIGUE', repos = c('https://mkleinsa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.48 score 2 scripts 110 downloads 6 mentions 2 exports 22 dependencies

Last updated 4 years agofrom:6227a8aed5. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winNOTENov 07 2024
R-4.5-linuxNOTENov 07 2024
R-4.4-winNOTENov 07 2024
R-4.4-macNOTENov 07 2024
R-4.3-winNOTENov 07 2024
R-4.3-macNOTENov 07 2024

Exports:bf.cal.metahetero

Dependencies:clidata.tabledplyrfansigenericsgluejsonlitelifecyclemagrittrpillarpkgconfigR6rlangrlistSQUAREMtibbletidyselectutf8vctrswithrXMLyaml